More linear search with invariants

CS 5010 Program Design Paradigms "Bootcamp"

 Lesson 8.6
Lesson Introduction

- In this lesson, we'll show an example of how invariants can be used to improve a linear search.
- The transformation we'll use is called "reduction in strength", and is a well-known algorithm that compilers use to improve the code in a loop.

Another example: Integer Square Root

int-sqrt : Nat -> Nat GIVEN: n,
RETURNS: z such that $z^{2} \leq n<(z+1)^{2}$ examples:
(int-sqrt 25) $=5$
(int-sqrt 26) $=5 \ldots$
(int-sqrt 35) = 5
(int-sqrt 36) = 6

This is one of my favorite examples.

Video Demonstration

- Watch the video demonstration at http://www.youtube.com/watch?v=EW66FvUApE
- Note: the video is a little out of date:
- it talks about accumulators instead of context arguments
- the purpose statements are not always up to our current coding standards
- sorry about that.
- Below are the slides from the video, slightly updated.

int-sqrt.v0

;; STRATEGY: Call more general function (define (int-sqrt.v0 n)
(linear-search 0 n
(lambda (z)
(< n (sqr (+ z 1))))))

int-sqrt.v1

(define (int-sqrt.v1 n)
(local
((define (inner-loop z)
; ; PURPOSE: Returns int-sqrt(n)
; ; WHERE $\mathrm{z}^{2} \leq \mathrm{n} \longleftarrow$ invariant guarantees
; ; HALTING MEASURE ($-n z$) that the halting
(cond
[(< n (sqr (+ z 1))) z] measure is non[else (inner-loop (+ z 1))]))
(inner-loop 0)))

A picture of this invariant

What happens at the recursive call?

INVARIANT $z^{2} \leq n$: true again for the new value of z.

Improving this code

Don't like to do sqr at every step, so let's keep the value of
(sqr (+ z 1))
in a context argument, which we'll call u.
Compute new value of u as follows:

$$
\begin{aligned}
z^{\prime} & =(z+1) \\
u^{\prime} & =\left(z^{\prime}+1\right) *\left(z^{\prime}+1\right) \\
& =((z+1)+1) *((z+1)+1) \\
& =(z+1)^{2}+2(z+1)+1 \\
& =u \quad+2 z+3
\end{aligned}
$$

Function Definition

(define (int-sqrt.v2 n)
(local
((define (inner-loop z u)
the inner loop finds the answer for the whole function
; ; PURPOSE: Returns int-sqrt(n)
; ; WHERE $\mathrm{z}^{2} \leq \mathrm{n}$
; AND $u=(z+1)^{2} \quad u=(z+1)^{2}$
; $;$ HALTING MEASURE (- n z)
(cond
[(< n u) z]
update context argument to
[else (inner-loop maintain the invariant

$$
\begin{aligned}
& (+1 \text { z) } \\
& \left.\left.\left.\left.\left.\left(+\quad u\left({ }^{*} 2 z\right) 3\right)\right)\right]\right)\right)\right)
\end{aligned}
$$

(inner-loop (1))) initialize context argument to make the invariant true

Let's do it one more time

Add invariant: v = 2*z+3

$$
\begin{aligned}
z^{\prime} & =z+1 \\
v^{\prime} & =2^{*} z^{\prime}+3 \\
& =2^{*}(z+1)+3 \\
& =2^{*} z+2+3 \\
& =(2 * z+3)+2 \\
& =v+2
\end{aligned}
$$

Function Definition

```
(define (int-sqrt.v3 n)
```

 (local
 ((define (inner-loop z u v)
 ; ; PURPOSE: Returns int-sqrt(n)
 ; ; WHERE \(z^{\wedge} 2 \leq n\)
 ; \(;\) AND \(u=(z+1)^{\wedge} 2\)
 ; ; AND v = 2*z+3
 ; ; HALTING MEASURE (- n z)
 (cond
 \(u=(z+1)^{2}\)
 [(< n u) z]
 [else (inner-loop
 (+ 1 z)
 \(v=2 z+3\)
 (+ u v)
 (+ v 2))]))
 (inner-loop 013)))
 You could never understand this program if I hadn't written down the invariants!

Lesson Summary

- We've seen how invariants can be used to improve the code of a linear search or loop.
- We've seen how invariants can be used to explain the "reduction-in-strength" optimization.
- We've seen how invariants can be used to explain an otherwise-obscure piece of code.

Next Steps

- Study the file 08-8-square-roots.rkt in the Examples folder.
- Do the Guided Practices
- If you have questions about this lesson, ask them on the Discussion Board
- Go on to the next lesson

