
More	linear	search	with	
invariants

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	8.6

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Lesson	Introduction

• In	this	lesson,	we’ll	show	an	example	of	how	
invariants	can	be	used	to	improve	a	linear	
search.

• The	transformation	we’ll	use	is	called	
“reduction	in	strength”,	and	is	a	well-known	
algorithm	that	compilers	use	to	improve	the	
code	in	a	loop.

2

Another	example:	Integer	Square	Root

int-sqrt : Nat -> Nat
GIVEN: n,
RETURNS: z such that z² ≤ n < (z+1)²
examples:
(int-sqrt 25) = 5
(int-sqrt 26) = 5 ...
(int-sqrt 35) = 5
(int-sqrt 36) = 6

3

This	is	one	of	my	favorite	
examples.

Video	Demonstration
• Watch	the	video	demonstration	at	
http://www.youtube.com/watch?v=EW66F-
vUApE

• Note:		the	video	is	a	little	out	of	date:
– it	talks	about	accumulators	instead	of	context	
arguments

– the	purpose	statements	are	not	always	up	to	our	
current	coding	standards

– sorry	about	that.
• Below	are	the	slides	from	the	video,	slightly	
updated.

4

int-sqrt.v0
;; STRATEGY: Call more general function
(define (int-sqrt.v0 n)
(linear-search 0 n
(lambda (z)

(< n (sqr (+ z 1))))))

5

int-sqrt.v1
(define (int-sqrt.v1 n)
(local
((define (inner-loop z)

;; PURPOSE: Returns int-sqrt(n)
;; WHERE z² ≤ n
;; HALTING MEASURE (- n z)
(cond

[(< n (sqr (+ z 1))) z]
[else (inner-loop (+ z 1))])))

(inner-loop 0)))

6

invariant	guarantees	
that	the	halting	
measure	is	non-
negative

we	just	checked	that	(z+1)²
≤	n,	so	calling	inner-loop	
with	z+1	satisfies	the	
invariant.

A	picture	of	this	invariant

7

0 Nz

INVARIANT:	z²	≤	n
all	these	numbers	also	have	squares	that	
are	≤	n

What	happens	at	the	recursive	call?

8

0 Nz

INVARIANT:	z²	≤	n
all	these	numbers	also	have	squares	that	
are	≤	n

CONDITION:	(z+1)²	≤	n

0 Nz_new = z+10 Nz

INVARIANT	z²	≤	n:	true	again	for	the	
new	value	of	z.

Improving	this	code
Don't	like	to	do	sqr at	every	step,	so	let's	keep	the	value	
of	
(sqr (+ z 1))
in	a	context	argument,	which	we'll	call	u.
Compute	new	value	of	u	as	follows:

z' = (z+1)
u' = (z'+1)*(z'+1)

= ((z+1)+1)*((z+1)+1)
= (z+1)² + 2(z+1) + 1
= u + 2z + 3

9

Function	Definition
(define (int-sqrt.v2 n)
(local
((define (inner-loop z u)

;; PURPOSE: Returns int-sqrt(n)
;; WHERE z² ≤ n
;; AND u = (z+1)²
;; HALTING MEASURE (- n z)
(cond
[(< n u) z]
[else (inner-loop

(+ 1 z)
(+ u (* 2 z) 3))])))

(inner-loop 0 1)))

10

the	inner	loop	finds	the	
answer	for	the	whole	
function

update	context	argument	to	
maintain	the	invariant

initialize	context	
argument	to	make	the	
invariant	true

u	=	(z+1)²

Let's	do	it	one	more	time

Add invariant: v = 2*z+3

z' = z+1
v' = 2*z'+ 3

= 2*(z+1) + 3
= 2*z + 2 + 3
= (2*z + 3) + 2
= v + 2

11

Function	Definition
(define (int-sqrt.v3 n)

(local
((define (inner-loop z u v)

;; PURPOSE: Returns int-sqrt(n)
;; WHERE z^2 ≤ n
;; AND u = (z+1)^2
;; AND v = 2*z+3
;; HALTING MEASURE (- n z)
(cond

[(< n u) z]
[else (inner-loop

(+ 1 z)
(+ u v)
(+ v 2))])))

(inner-loop 0 1 3)))

12

v	=	2z+3

u	=	(z+1)²

You	could	never	understand	this	
program	if	I	hadn't	written	down	the	

invariants!

Lesson	Summary

• We’ve	seen	how	invariants	can	be	used	to	
improve	the	code	of	a	linear	search	or	loop.

• We’ve	seen	how	invariants	can	be	used	to	
explain	the	“reduction-in-strength”	
optimization.

• We’ve	seen	how	invariants	can	be	used	to	
explain	an	otherwise-obscure	piece	of	code.	

13

Next	Steps

• Study	the	file	08-8-square-roots.rkt	in	the	
Examples	folder.

• Do	the	Guided	Practices
• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Go	on	to	the	next	lesson

14

